Microsoft Fabric: Troubleshooting Query Parameters in Published Semantic Models

Microsoft Fabric: Troubleshooting Query Parameters in Published Semantic Models

Power Query is a powerful tool within the Microsoft Fabric environment, enabling users to manage data sources and transform data efficiently. However, a common issue you may face is that after publishing the Semantic Model, the Power Query parameters either do not appear or are greyed out, making them non-editable. In this post and its accompanying YouTube video, I’ll walk you through the steps to diagnose and fix these problems, ensuring that your parameters work as expected in your published semantic models.

Why Do Power Query Parameters Become Unavailable?

There are a few reasons why your Power Query parameters might not appear or be editable after you’ve published your report to Microsoft Fabric. These issues generally relate to either the way the parameters are set up within Power Query in Power BI Desktop or how they interact with the data sources.

Common Cause and Fix

1. Parameter Data Type in Power Query

One of the most common reasons your parameters might be greyed out or non-editable is due to the parameters’ data types defined in Power Query within Power BI Desktop. If your parameters are of type any, then they won’t show up, or they are read-only (greyed out). The fixation is easy:

Continue reading “Microsoft Fabric: Troubleshooting Query Parameters in Published Semantic Models”

Incremental Refresh in Power BI, Part 3: Best Practices for Large Semantic Models

Incremental Refresh in Power BI, Best Practices for Large Semantic Models

In the two previous posts of the Incremental Refresh in Power BI series, we have learned what incremental refresh is, how to implement it, and best practices on how to safely publish the semantic model changes to Microsoft Fabric (aka Power BI Service). This post focuses on a couple of more best practices in implementing incremental refresh on large semantic models in Power BI.

Note

Since May 2023 that Microsoft announced Microsoft Fabric for the first time, Power BI is a part of Microsoft Fabric. Hence, we use the term Microsoft Fabric throughout this post to refer to Power BI or Power BI Service.

The Problem

Implementing incremental refresh on Power BI is usually straightforward if we carefully follow the implementation steps. However in some real-world scenarios, following the implementation steps is not enough. In different parts of my latest book, Expert Data Modeling with Power BI, 2’nd Edition, I emphasis the fact that understanding business requirements is the key to every single development project and data modelling is no different. Let me explain it more in the context of incremental data refresh implementation.

Let’s say we followed all the required implementation steps and we also followed the deployment best practices and everything runs pretty good in our development environment; the first data refresh takes longer, we we expected, all the partitions are also created and everything looks fine. So, we deploy the solution to production environment and refresh the semantic model. Our production data source has substantially larger data than the development data source. So the data refresh takes way too long. We wait a couple of hours and leave it to run overnight. The next day we find out that the first refresh failed. Some of the possibilities that lead the first data refresh to fail are Timeout, Out of resources, or Out of memory errors. This can happen regardless of your licensing plan, even on Power BI Premium capacities.

Another issue you may face usually happens during development. Many development teams try to keep their development data source’s size as close as possible to their production data source. And… NO, I am NOT suggesting using the production data source for development. Anyway, you may be tempted to do so. You set one month’s worth of data using the RangeStart and RangeEnd parameters just to find out that the data source actually has hundreds of millions of rows in a month. Now, your PBIX file on your local machine is way too large so you cannot even save it on your local machine.

This post provides some best practices. Some of the practices this post focuses on require implementation. To keep this post at an optimal length, I save the implementations for future posts. With that in mind, let’s begin.

Best Practices

So far, we have scratched the surface of some common challenges that we may face if we do not pay attention to the requirements and the size of the data being loaded into the data model. The good news is that this post explores a couple of good practices to guarantee smoother and more controlled implementation avoiding the data refresh issues as much as possible. Indeed, there might still be cases where we follow all best practices and we still face challenges.

Note

While implementing incremental refresh is available in Power BI Pro semantic models, but the restrictions on parallelism and lack of XMLA endpoint might be a deal breaker in many scenarios. So many of the techniques and best practices discussed in this post require a premium semantic model backed by either Premium Per User (PPU), Power BI Capacity (P/A/EM) or Fabric Capacity.

The next few sections explain some best practices to mitigate the risks of facing difficult challenges down the road.

Practice 1: Investigate the data source in terms of its complexity and size

This one is easy; not really. It is necessary to know what kind of beast we are dealing with. If you have access to the pre-production data source or to the production, it is good to know how much data will be loaded into the semantic model. Let’s say the source table contains 400 million rows of data for the past 2 years. A quick math suggests that on average we will have more than 16 million rows per month. While these are just hypothetical numbers, you may have even larger data sources. So having some data source size and growth estimation is always helpful for taking the next steps more thoroughly.

Practice 2: Keep the date range between the RangeStart and RangeEnd small

Continuing from the previous practice, if we deal with fairly large data sources, then waiting for millions of rows to be loaded into the data model at development time doesn’t make too much sense. So depending on the numbers you get from the previous point, select a date range that is small enough to let you easily continue with your development without needing to wait a long time to load the data into the model with every single change in the Power Query layer. Remember, the date range selected between the RangeStart and RangeEnd does NOT affect the creation of the partition on Microsoft Fabric after publishing. So there wouldn’t be any issues if you chose the values of the RangeStart and RangeEnd to be on the same day or even at the exact same time. One important point to remember is that we cannot change the values of the RangeStart and RangeEnd parameters after publishing the model to Microsoft Fabric.

Continue reading “Incremental Refresh in Power BI, Part 3: Best Practices for Large Semantic Models”

Incremental Refresh in Power BI, Part 2; Best Practice; Do NOT Publish Data Model Changes from Power BI Desktop

Incremental Refresh Best Practice, Do NOT Publish Changes from Power BI Desktop

In a previous post, I shared a comprehensive guide on implementing Incremental Data Refresh in Power BI Desktop. We covered essential concepts such as truncation and load versus incremental load, understanding historical and incremental ranges, and the significant benefits of adopting incremental refresh for large tables. If you missed that post, I highly recommend giving it a read to get a solid foundation on the topic.

Now, let’s dive into Part 2 of this series where we will explore tips and tricks for implementing Incremental Data Refresh in more complex scenarios. This blog follows up on the insights provided in the first part, offering a deeper understanding of how Incremental Data Refresh works in Power BI. Whether you’re a seasoned Power BI user or just getting started, this post will provide valuable information on optimising your data refresh strategies. So, let’s begin.

When we publish a Power BI solution from Power BI Desktop to Fabric Service, we upload the data model, queries, reports, and the loaded data into the data model to the cloud. In essence, the Power Query queries, the data model and the loaded data will turn to the Semantic Model and the report will be a new report connected to the semantic model with Connect Live storage mode to the semantic model. If you are not sure what Connect Live means, then check out this post where I explain the differences between Connect Live and Direct Query storage modes.

The Publish process in Power BI Desktop makes absolute sense in the majority of Power BI developments. While Power BI Desktop is the predominant development tool to implement Power BI solutions, the publishing process is still not quite up to the task, especially on more complex scenarios such as having Incremental Data Refresh configured on one or more tables. Here is why.

As explained in this post, publishing the solution into the service for the first time does not create the partitions required for the incremental refresh. The partitions will be created after the first time we refresh the semantic model from the Fabric Service. Imagine the case where we successfully refreshed the semantic model, but we need to modify the solution in Power BI Desktop and republish the changes to the service. That’s where things get more complex than expected. Whenever we republish the new version from Power BI Desktop to Fabric Service, we get a warning that the semantic model exists in the target workspace and that we want to Overwrite it with the new one. In other words, Power BI Desktop currently does not offer to apply the semantic model changes without overwriting the entire model. This means that if we move forward, as the warning message suggests, we replace the existing semantic model and the created partitions with the new one without any partitions. So the new semantic model is now in its very first stage and the partitions of the table(s) with incremental refresh are gone. Of course, the partitions will be created during the next refresh, but this is not efficient and realistically totally unacceptable in production environments. That’s why we MUST NOT use Power BI Desktop for republishing an already published semantic model to avoid overriding the already created tables’ partitions. Now that Power BI Desktop does not support more advanced publishing scenarios such as detecting the existing partitions created by the incremental refresh process, let’s discuss our other options.

Alternatives to Power BI Desktop to Publish Changes to Fabric Service

While we should not publish the changes from Power BI Desktop to the Service, we can still use it as our development tool and publish the changes using third-party tools, thanks to the External Tools support feature. The following subsections explain using two tools that I believe are the best.

Continue reading “Incremental Refresh in Power BI, Part 2; Best Practice; Do NOT Publish Data Model Changes from Power BI Desktop”

Datatype Conversion in Power Query Affects Data Modeling in Power BI

Datatype Conversion in Power Query Affects Data Modeling in Power BI

In my consulting experience working with customers using Power BI, many challenges that Power BI developers face are due to negligence to data types. Here are some common challenges that are the direct or indirect results of inappropriate data types and data type conversion:

  • Getting incorrect results while all calculations in your data model are correct.
  • Poor performing data model.
  • Bloated model size.
  • Difficulties in configuring user-defined aggregations (agg awareness).
  • Difficulties in setting up incremental data refresh.
  • Getting blank visuals after the first data refresh in Power BI service.

In this blogpost, I explain the common pitfalls to prevent future challenges that can be time-consuming to identify and fix.

Background

Before we dive into the topic of this blog post, I would like to start with a bit of background. We all know that Power BI is not only a reporting tool. It is indeed a data platform supporting various aspects of business intelligence, data engineering, and data science. There are two languages we must learn to be able to work with Power BI: Power Query (M) and DAX. The purpose of the two languages is quite different. We use Power Query for data transformation and data preparation, while DAX is used for data analysis in the Tabular data model. Here is the point, the two languages in Power BI have different data types.

The most common Power BI development scenarios start with connecting to the data source(s). Power BI supports hundreds of data sources. Most data source connections happen in Power Query (the data preparation layer in a Power BI solution) unless we connect live to a semantic layer such as an SSAS instance or a Power BI dataset. Many supported data sources have their own data types, and some don’t. For instance, SQL Server has its own data types, but CSV doesn’t. When the data source has data types, the mashup engine tries to identify data types to the closest data type available in Power Query. Even though the source system has data types, the data types might not be compatible with Power Query data types. For the data sources that do not support data types, the matchup engine tries to detect the data types based on the sample data loaded into the data preview pane in the Power Query Editor window. But, there is no guarantee that the detected data types are correct. So, it is best practice to validate the detected data types anyway.

Power BI uses the Tabular model data types when it loads the data into the data model. The data types in the data model may or may not be compatible with the data types defined in Power Query. For instance, Power Query has a Binary data type, but the Tabular model does not.

The following table shows Power Query’s datatypes, their representations in the Power Query Editor’s UI, their mapping data types in the data model (DAX), and the internal data types in the xVelocity (Tabular model) engine:

Power Query and DAX (data model) data type mapping
Power Query and DAX (data model) data type mapping

As the above table shows, in Power Query’s UI, Whole Number, Decimal, Fixed Decimal and Percentage are all in type number in the Power Query engine. The type names in the Power BI UI also differ from their equivalents in the xVelocity engine. Let us dig deeper.

Continue reading “Datatype Conversion in Power Query Affects Data Modeling in Power BI”